653/Math. 22-23 / 52111

B.Sc. Semester-V Examination, 2022-23 MATHEMATICS (Honours)

Course ID: 52111 Course Code: SH/MTH/501/C-11 Course Title: Partial Differential Equations and Applications

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Symbols have their usual meaning.

- 1. Answer any **five** questions: $2 \times 5 = 10$
 - a) When a first order partial differential equation (PDE) is said to be *linear*? Give an example of it.
 - b) State principle of conservation of linear momentum.
 - c) Form a partial differential equation by eliminating the arbitrary functions f and g from the relation

$$u = f(x-cy) + g(x+cy)$$
, c being constant.

d) Write down the Lagrange's subsidiary equations for the PDE: $x \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = u$ and then find its general solution.

[Turn Over]

e) Determine all the points at which the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} - 2y \frac{\partial^2 u}{\partial x \partial y} + x \frac{\partial^2 u}{\partial y^2} - xy \frac{\partial u}{\partial y} = 0 \text{ is elliptic.}$$

- f) If a particle moves under a central force, prove that its angular momentum is conserved.
- g) Show that at an apse in a central orbit a particle moves perpendicular to the radius vector.
- h) Find the family of surfaces orthogonal to the family of surfaces whose partial differential equation is (y+z)p+(z+x)q=x+y.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) Find the general integral of the partial differential equation (PDE)

$$2y(u-3)\frac{\partial u}{\partial x} + (2x-u)\frac{\partial u}{\partial y} = y(2x-3)$$

and hence find the integral surface passes through the circle $(x-1)^2 + y^2 = 1$, u = 0. 3+2

b) Reduce the following partial differential equation to canonical form

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} - \frac{\partial^2 u}{\partial y^2} + 1 = 0, \ 0 \le x \le 1, \ y > 0$$

653/Math. (2)

- and hence obtain its general integral. 3+2
- c) Use the method of separation of variables to solve the equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \ 0 < x < 4, \ t > 0$$

satisfying the conditions:

$$u(x, 0) = 3\sin \pi x + 6\sin \frac{\pi x}{2}, \quad 0 < x < 4$$

 $u(0, t) = 0, \quad u(4, t) = 0, \quad t > 0$

- d) A particle moves under a force which is always directed towards a fixed point and is equal to $\mu \div (\text{distance})^2$ per unit mass and path is an ellipse. Then show that the velocity v at any time t is $v^2 = \mu \left(\frac{2}{r} \frac{1}{a}\right)$, where 2a be the length of the major axis.
- e) Using D' Alembert's formula, obtain the solution of the following initial boundary value problem (IBVP):

$$u_{tt} = 4u_{xx}, 0 < x < \infty, t > 0$$

$$u(x, 0) = \cos x, u_{t}(x, 0) = x, 0 < x < \infty$$

$$u_{x}(0, t) = 0, t > 0 5$$

- f) A heavy particle slides down the arc of a smooth cycloid whose axis is vertical and vertex downwards. If it starts from rest at a cusp and arrives at the vertex; prove that the time occupied in falling down the first half of the vertical height is equal to the time of falling down the second half.
- 3. Answer any **one** question: $10 \times 1 = 10$
 - a) i) Find the general solution of the following Cauchy problem for the wave equation

$$u_{tt} - c^2 u_{xx} = 0, \quad -\infty < x < \infty, \ t > 0$$

$$u(x, 0) = f(x), \quad -\infty < x < \infty$$

$$u_t(x, 0) = g(x), \quad -\infty < x < \infty.$$

Hence obtain the solution of the following wave equation

$$u_{tt} = u_{xx}, \ u(x, 0) = \sin x, \ u_{t}(x, 0) = x, \ -\infty < x < \infty$$

ii) A planet describes an elliptic orbit with the sun at one of its foci under a central force which is always directed towards the sun, find the law of force. (5+2)+3=10

b) i) Solve, by method of separation of variables, the following initial boundary value problem (IBVP):

$$u_{t} = \alpha^{2} u_{xx},$$
 $0 < x < L, t > 0$
 $u(x, 0) = f(x),$ $0 < x < L$
 $u(0, t) = T_{1},$ $u(L, t) = T_{2}, t > 0$

where α , T_1 and T_2 are constants.

ii) A particle moves under a central acceleration $\frac{\mu}{r^5}$ (r being the distance from the center of force) and is projected from an apse at a distance a with a velocity $\sqrt{\frac{\mu}{2a^4}}$, show that the equation of the path of the particle is $r = a\cos\theta$. 6+4=10
